Dirichlet series and convolution equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special values of shifted convolution Dirichlet series

In a recent important paper, Hoffstein and Hulse [14] generalized the notion of Rankin-Selberg convolution L-functions by defining shifted convolution L-functions. We investigate symmetrized versions of their functions, and we prove that the generating functions of certain special values are linear combinations of weakly holomorphic quasimodular forms and “mixed mock modular” forms.

متن کامل

On Non-Vanishing of Convolution of Dirichlet Series

We study the non-vanishing on the line Re(s) = 1 of the convolution series associated to two Dirichlet series in a certain class of Dirichlet series. The non-vanishing of various L-functions on the line Re(s) = 1 will be simple corollaries of our general theorems. Let f(z) = ∑∞ n=1 âf (n)e 2πinz and g(z) = ∑∞ n=1 âg(n)e 2πinz be cusp forms of weight k and level N with trivial character. Let Lf ...

متن کامل

p-ADIC PROPERTIES OF MODULAR SHIFTED CONVOLUTION DIRICHLET SERIES

Ho stein and Hulse recently introduced the notion of shifted convolution Dirichlet series for pairs of modular forms f1 and f2. The second two authors investigated certain special values of symmetrized sums of such functions, numbers which are generally expected to be mysterious transcendental numbers. They proved that the generating functions of these values in the h-aspect are linear combinat...

متن کامل

Asymptotic bounds for special values of shifted convolution Dirichlet series

In [15], Hoffstein and Hulse defined the shifted convolution series of two cusp forms by “shifting” the usual Rankin-Selberg convolution L-series by a parameter h. We use the theory of harmonic Maass forms to study the behavior in h-aspect of certain values of these series and prove a polynomial bound as h → ∞. Our method relies on a result of Mertens and Ono [22], who showed that these values ...

متن کامل

Convolution Dirichlet Series and a Kronecker Limit Formula for Second-order Eisenstein Series

In this article we derive analytic and Fourier aspects of a Kronecker limit formula for second-order Eisenstein series. Let Γ be any Fuchsian group of the first kind which acts on the hyperbolic upper half-space H such that the quotient Γ\H has finite volume yet is non-compact. Associated to each cusp of Γ\H, there is a classically studied first-order non-holomorphic Eisenstein series E(s, z) w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences

سال: 1988

ISSN: 0034-5318

DOI: 10.2977/prims/1195174696